203 research outputs found

    Π”ΠΈΠ·Π°Ρ˜Π½ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° Π½Π° СкспСримСнти

    Get PDF
    Π Π΅ΡˆΠ°Π²Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° ΠΌΠ½ΠΎΡˆΡ‚Π²ΠΎ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ Π²ΠΎ Ρ…Π΅ΠΌΠΈΡ˜Π°Ρ‚Π° ΠΈ хСмиската Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°, ΠΊΠ°ΠΊΠΎ ΠΈ Π²ΠΎ останатитС Π³Ρ€Π°Π½ΠΊΠΈ ΠΎΠ΄ инТСнСрството, чСсто Π΅ ΠΏΠΎΠ²Ρ€Π·Π°Π½ΠΎ со ΠΈΠ·Π²Π΅Π΄ΡƒΠ²Π°ΡšΠ΅ Π½Π° слоТСни ΠΈ скапоцСни СкспСримСнти. ΠžΡ‚Ρ‚ΡƒΠΊΠ° Π΅ Ρ€Π°Π·Π±ΠΈΡ€Π»ΠΈΠ²ΠΎ Π·Π½Π°Ρ‡Π΅ΡšΠ΅Ρ‚ΠΎ ΠΎΠ΄ ΠΏΠΎΡΡ‚ΠΎΠ΅ΡšΠ΅Ρ‚ΠΎ Π½Π° Π½Π°Ρ‡ΠΈΠ½ΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎ ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ΅ Π½Π° СкспСримСнтитС, ΠΊΠΎΠΈ Π²ΠΎ Π½ΠΈΠ·Π° случаи ΠΎΠ²ΠΎΠ·ΠΌΠΎΠΆΡƒΠ²Π°Π°Ρ‚ ΡΡƒΡˆΡ‚Π΅ΡΡ‚Π²Π΅Π½ΠΎ Π΄Π° сС скратат Π²Ρ€Π΅ΠΌΠ΅Ρ‚ΠΎ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»Π½ΠΈΡ‚Π΅ Ρ‚Ρ€ΠΎΡˆΠΎΡ†ΠΈΡ‚Π΅ ΠΏΡ€ΠΈ ΠΈΠ·Π²Ρ€ΡˆΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΈΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ. Π”ΠΎΠ»Π³ΠΎ Π²Ρ€Π΅ΠΌΠ΅ рСдослСдот Π½Π° ΠΈΠ·Π²Ρ€ΡˆΡƒΠ²Π°ΡšΠ΅ Π½Π° СкспСримСнтитС Π±ΠΈΠ» Π±Π°Π·ΠΈΡ€Π°Π½ Π½Π° Π»ΠΈΡ‡Π½ΠΎΡ‚ΠΎ искуство ΠΈ ΠΈΠ½Ρ‚ΡƒΠΈΡ†ΠΈΡ˜Π° Π½Π° истраТувачот. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‚Π΅ Π½Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎ ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ΅ Π½Π° СкспСримСнтитС ΠΎΠ²ΠΎΠ·ΠΌΠΎΠΆΡƒΠ²Π°Π°Ρ‚ ΠΊΠΎΡ€ΠΈΡΡ‚Π΅ΡšΠ΅ Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π½Π΅ само Π·Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½Π° Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΡ‚Π΅ ΠΎΠ΄ тСстовитС, Ρ‚ΡƒΠΊΡƒ ΠΈ Π²ΠΎ Ρ„Π°Π·Π°Ρ‚Π° Π½Π° ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ°Ρ‚Π° ΠΈ ΡΠΏΡ€ΠΎΠ²Π΅Π΄ΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° СкспСримСнтитС. Π Π°Π±ΠΎΡ‚Π°Ρ‚Π° Π½Π° истраТувачитС ΠΊΠΎΠΈ Π³ΠΈ користат Ρ‚ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»Π½ΠΎ сС олСснува, Π·Π°Ρ‚ΠΎΠ° ΡˆΡ‚ΠΎ сС ΠΈΠ·Π²Π΅Π΄ΡƒΠ²Π° ΠΏΠΎ Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π΄Π΅Ρ„ΠΈΠ½ΠΈΡ€Π°Π½Π°, рСдослСдна постапка. Π’ΠΎ соврСмСната ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠ° Ρ‚Π΅ΠΎΡ€ΠΈΡ˜Π° Π·Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎ ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ΅ Π½Π° СкспСримСнтитС ΠΏΠΎΡΡ‚ΠΎΡ˜Π°Ρ‚ Π΄Π²Π° основни ΠΎΠ΄Π΄Π΅Π»ΠΈ: 1. ΠŸΠ»Π°Π½ΠΈΡ€Π°ΡšΠ΅ Π½Π° СкспСримСнтитС Π·Π°Ρ€Π°Π΄ΠΈ ΠΈΠ·ΡƒΡ‡ΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΈΡ‚Π΅ Π½Π° слоТСнитС процСси ΠΈ ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π°Ρ‚Π° Π½Π° повСќС-ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΈΡ‚Π΅ систСми. 2. ΠŸΠ»Π°Π½ΠΈΡ€Π°ΡšΠ΅ Π½Π° СкспСримСнтитС Π·Π°Ρ€Π°Π΄ΠΈ оптималност Π½Π° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΡˆΠΊΠΈΡ‚Π΅ процСси ΠΈ ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π°Ρ‚Π° Π½Π° повСќС-ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΈΡ‚Π΅ систСми. Π—Π° ΠΏΠΎΡˆΠΈΡ€ΠΎΠΊΠΎ Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚ΠΈΡ€Π°ΡšΠ΅ Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‚Π΅ Π·Π° ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ΅ (дизајн) ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° Π½Π° СкспСримСнтитС ΠΌΠ΅Ρ“Ρƒ истраТувачитС Π½Π΅ΠΎΠΏΡ…ΠΎΠ΄Π½ΠΎ Π΅ ΠΏΠΎΡΡ‚ΠΎΠ΅ΡšΠ΅ Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΡˆΠΊΠΈ упатства напишани Π½Π° Ρ€Π°Π·Π±ΠΈΡ€Π»ΠΈΠ², јасСн ΠΈ СдноставСн Π½Π°Ρ‡ΠΈΠ½. Π’ΠΎΠΊΠΌΡƒ ΠΎΠ΄ Ρ‚Π°Π° мисла сС Π²ΠΎΠ΄Π΅Π²ΠΌΠ΅ ΠΏΡ€ΠΈ ΠΏΠΈΡˆΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° овој Π΅-ΡƒΡ‡Π΅Π±Π½ΠΈΠΊ; Π΄Π° Π±ΠΈΠ΄Π΅ ΠΊΠΎΠ½Ρ†ΠΈΠ·Π΅Π½, јасСн, лСсно Ρ€Π°Π·Π±ΠΈΡ€Π»ΠΈΠ², ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π»ΠΈΠ²

    Air protection

    Get PDF
    Аn air pollutant is defined as a substance that is present in the atmosphere at a concentration that is sufficient to cause harm to humans, other animals, vegetation, or materials. Each day humans inhale approximately 20 000 l of air. If harmful gases or fine toxic particles are present in the air, they are also drawn into the lungs, where they may cause serious respiratory diseases and other health problems. Approximately 90% of all air pollution is caused by five primary air pollutants: carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs; mostly hydrocarbons [HCs]), and suspended particles. The transportation industry is responsible for nearly 50% of all air pollution from anthropogenic sources. In addition to CO, automobiles emit NOx and HCs. The burning of fossil fuels by stationary sources (power plants and industrial plants) accounts for approximately one-third of air pollutants, mainly in the form of sulfur oxides. Other industrial activities, along with variety of processes, including incineration of solid wastes, contribute smaller amounts. If pollutants were distributed evenly over the entire country, their harmful effects would be greatly reduced. Because the pollutants tend to be concentrated in urban areas, where industry is more common and automobile traffic is congested, large segments of the population are exposed to their harmful effects, particularly during daily rush hours. In addition to the five primary air pollutants, the atmosphere is contaminated with secondary air pollutants, which are harmful substances produced by chemical reactions between primary pollutants and other constituents of the atmosphere. Secondary pollutants include sulfuric acid, nitric acid, sulfates and nitrites (which contribute to acid deposition), and ozone and other photochemical oxidants (which contribute to photochemical smog). Biomass is material from vegetation and it can be used as a fuel in various boilers and combustors. The main components of biomass are carbon, oxygen and hydrogen but it also contains nitrogen, sulphur and, normally, small amounts of chlorides. The main part of the ash comprises Ca, K, Si, Mg, Mn, Al, Fe, P, Na and Zn. During combustion, various kinds of impurities are generated and some of them there are in the flue gas. Most of them are related to the composition of the biomass: particles from ash, NOx from nitrogen, SO2 from sulphur, etc. There is impurities related to incomplete or bad combustion e.g. particles such as soot and unburned matter, carbon monoxide and other gaseous organic compounds (TOC) such as dioxin. The impurities in the flue gas are harmful if they are emitted to the atmosphere. Flue gas cleaning must be installed to eliminate or at least reduce this problem

    Predicting the ballistic strength of aramid fiber composites by implementing full factorial experimental design

    Get PDF
    The purpose of the study is to predict the ballistic strength of hard aramid fiber/phenolic ballistic composites by implementing the full factorial experimental design. When designing ballistic composites two major factors are the most important: the ballistic strength and the weight of the protection. The ultimate target is to achieve the required ballistic strength with the lowest possible weight of protection. The hard ballistic aramid/phenolic composites were made by open mold high pressure, high-temperature compression of prepreg made of plain woven aramid fibre fabric and polyvinyl butyral modified phenolic resin. The preparation of the composites was done by applying the 22 full factorial experimental design. The areal weight of the composites was taken to be the first factor and the second – fibre/resin ratio. The first factor low and high levels were chosen to be 2 kg/m2 and 9 kg/m2, respectively and for the second factor – 80/20 and 50/50, respectively. The first-order linear model to approximate the response i.e. the ballistic strength of the composites within the study domain (2 – 9) kg/m2 x (80/20 – 50/50) ratio was used. The influence of each individual factor on the response function was established, as well as the interaction of the two factors. It was found out that the estimated first-degree regression equation with interaction gives a very good approximation of the experimental results of the ballistic strength of composites within the study domain. Key words: aramid fibre, ballistic composites, factorial design, regression equation, V

    The optimization of fiber-reinforced backpanel as a substrate for ceramic/composite ballistic inserts for personal protection

    Get PDF
    Pure fiber-reinforced polymer composites can give protection only of a certain level of ballistic threat i.e. only of small arms ammunition. For higher ballistic threat of high energy projectiles, ballistic inserts of ceramic tiles/composite back panel are used. Such inserts are usually composed of ceramic tiles, facing the impact, laid on fiberreinforced polymer back panel where the hardness of the ceramic is the main factor contributing to the ballistic strength of the inserts. The purpose of the back panel is to keep the tiles stuck together and to be strong/rigid enough to keep the backface blunt trauma effect of the inserts under the allowed upper limit of 44 mm (1,73 inch). In this study we used pure (99,5%) alumina 5 x 5 x 0,9 cm ceramic tiles and different types of back panel high-performance composites reinforced with aramid (Kevlar), ballistic nylon, ultra-high molecular weight polyetjylene (UHMWPE, Dyneema) and glass fibers. The purpose of the study was to find the optimal back panel construction in terms of its trauma performance, weight and price level. It was shown that the lowest trauma effect could be achieved with aramid composites, the lowest weight with UHMWPE, the cheapest – with glass but with a sacrifice of the weight and ballistic nylon backpanel was somewhere between aramid and glass panels in terms of its weight and price level

    Dust separation on bio mass combustion plants

    Get PDF
    Biomass is material from vegetation, it can be used as a fuel in various boilers and combustor. The main components: carbon, oxygen and hydrogen but it also contains nitrogen, sulphur, small amounts of chlorides and ash. The main part of the ash comprises: Ca, K, Si, Mg, Mn, Al, Fe, P, Na and Zn. During combustion, various kinds of impurities are generated and some of them we find in the flue gas. Most of these are related to the composition of the biomass: particles from ash, NOx from nitrogen, SO2 from sulphur, etc. The impurities in the flue gas are harmful if they are emitted to the atmosphere. The gas cleaning systems can be divided as follows: 1. Removal of particles or dust collection; 2. Removal of water soluble gases: SO2, HCl, HF and NH3; 3. Removal of NOx, mainly NO; 4. Removal of the very toxic substances: dioxin and mercury (Hg); One equipment or system can be specific for a certain pollutant or can, sometimes with some additions, take care of the whole gas cleaning. There are often several possible solutions for an actual plant with respect to emission limits, performance, reliability, costs, etc

    Mehanicke i toplotne karakteristike kompozitnog materijala za ugradnji u raketnoj tehnici

    Get PDF
    In this paper the tehnology for production of short carbon fibers moulding compound is described. The caracterization of the starting raw materials is perfomed and moulding compounds with different fiber/matrix ratio anddifferent fiber length are obtained. From the different lab – samples molded parts are made. The influence of the main processing parameters of short carbon fiber/phenolic resin composite on its mechanical properties is investigated and the optimal processing conditions are determined. For investigation the full factorial experimental design is used in which these parameters are varied: fiber length, temperature and time of the press cycle. As a result the regression equoation for impact resistance, compression strength, flexurel strength and the modulus of elasticity are determined. The obtained results has justified the application of this material in automotive, leasure, military and other industries where high temperature resistance and high mechanical strength is required

    Π’Ρ€Π΅Ρ‚ΠΌΠ°Π½ Π½Π° ΠΊΡ€Π°Ρ˜ΠΎΡ‚ ΠΎΠ΄ ΠΆΠΈΠ²ΠΎΡ‚ΠΎΡ‚ Π½Π° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΈΡ‚Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ

    Get PDF
    ΠŸΠΎΡ€Π°Π΄ΠΈ Π·Π³ΠΎΠ»Π΅ΠΌΡƒΠ²Π°ΡšΠ΅ Π½Π° Π΅ΠΊΠΎΠ»ΠΎΡˆΠΊΠΈΡ‚Π΅ Π±Π°Ρ€Π°ΡšΠ°, особСно ΠΎΠ΄ аспСкт Π½Π° ΠΊΡ€Π°Ρ˜Π½ΠΎΡ‚ΠΎ ΠΎΡ‚ΡΡ‚Ρ€Π°Π½ΡƒΠ²Π°ΡšΠ΅ Π½Π° искористСнитС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈ, ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΠΈΡ‚Π΅ ΠΈ Π΄ΠΈΠ·Π°Ρ˜Π½Π΅Ρ€ΠΈΡ‚Π΅ Π²ΠΎ ΠΈΠ΄Π½ΠΈΠ½Π° ΠΌΠΎΡ€Π° Π΄Π° Π³ΠΎ Π·Π΅ΠΌΠ°Ρ‚ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄ ΡΠΏΡ€Π°Π²ΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ ΠΈ ΠΎΡ‚ΡΡ‚Ρ€Π°Π½ΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° Π½ΠΈΠ²Π½ΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈ. Π—Π° ΠΊΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ, ΠΊΠ°ΠΊΠΎ Ρ‡Π΅Π»ΠΈΠΊ ΠΈ Π°Π»ΡƒΠΌΠΈΠ½ΠΈΡƒΠΌ, ΠΏΠΎΡΡ‚ΠΎΡ˜Π°Ρ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° Π½ΠΈΠ²Π½ΠΎ Ρ€Π΅Ρ†ΠΈΠΊΠ»ΠΈΡ€Π°ΡšΠ΅. ΠœΠ΅Ρ“ΡƒΡ‚ΠΎΠ°, ΠΎΠ²Π° Π½Π΅ Π΅ ΡΠ»ΡƒΡ‡Π°Ρ˜ со структурнитС ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ, ΠΊΠΎΠΈ ΠΈΠΌΠ°Π°Ρ‚ сè ΠΏΠΎΠ³ΠΎΠ»Π΅ΠΌΠ° ΠΏΡ€ΠΈΠΌΠ΅Π½Π° Π²ΠΎ Π³ΠΎΠ»Π΅ΠΌ Π±Ρ€ΠΎΡ˜ индустрии: автомобилската, Π³Ρ€Π°Π΄Π΅ΠΆΠ½Π°Ρ‚Π°, ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜Π°Ρ‚Π° Π·Π° ΠΌΠ΅Π±Π΅Π», Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜Π°Ρ‚Π°, авионската ΠΈ Π΄Ρ€. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΈΡ‚Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ ΠΏΠΎΠΊΠ°ΠΆΡƒΠ²Π°Π°Ρ‚ ΠΎΠ΄Π»ΠΈΡ‡Π½Π° Ρ˜Π°ΠΊΠΎΡΡ‚ ΠΈ цврстина Π²ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜Π° со ниска густина. ОвиС ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° сС особСно Π°Ρ‚Ρ€Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈ кај структурнитС ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ Π½Π°ΠΌΠ΅Π½Π΅Ρ‚ΠΈ Π·Π° транспорт Π½Π° стока ΠΈ Π»ΡƒΡ“Π΅ ΠΊΠΎΠΈ користат Π½Π΅ΠΎΠ±Π½ΠΎΠ²Π»ΠΈΠ²ΠΈ Π³ΠΎΡ€ΠΈΠ²Π°. НамалСната Ρ‚Π΅ΠΆΠΈΠ½Π° ΠΈ Π½Π΅ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅Ρ‚ΠΈΠΎΡ‚ ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚ Π·Π° транспорт придонСсуваат Π·Π° Π½Π°ΠΌΠ°Π»ΡƒΠ²Π°ΡšΠ΅ Π½Π° Π²ΠΊΡƒΠΏΠ½ΠΈΡ‚Π΅ Ρ‚Ρ€ΠΎΡˆΠΎΡ†ΠΈ ΠΈ ΠΏΠΎΡ‚Ρ€ΠΎΡˆΡƒΠ²Π°Ρ‡ΠΊΠ°Ρ‚Π° Π½Π° Π³ΠΎΡ€ΠΈΠ²ΠΎ. Π’Π΅ΡœΠ΅ Π½Π΅ΠΊΠΎΠ»ΠΊΡƒ Π³ΠΎΠ΄ΠΈΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΡ‚Π΅ Π·Π°Ρ˜Π°ΠΊΠ½Π°Ρ‚ΠΈ со стаклСни Π²Π»Π°ΠΊΠ½Π° сС користат Π²ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈ ΠΊΠ°ΠΊΠΎ ΡˆΡ‚ΠΎ сС ΠΊΠΎΠ½Ρ‚Π΅Ρ˜Π½Π΅Ρ€ΠΈ, Ρ˜Π°Ρ…Ρ‚ΠΈ ΠΈ Π·Π° ΠΌΠ½ΠΎΠ³Ρƒ автомобилски Π΄Π΅Π»ΠΎΠ²ΠΈ. Π”ΠΎΠ΄Π΅ΠΊΠ° ΠΏΠ°ΠΊ, ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΡ‚Π΅ Π·Π°Ρ˜Π°ΠΊΠ½Π°Ρ‚ΠΈ со Ρ˜Π°Π³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΈ ΠΈ Π°Ρ€Π°ΠΌΠΈΠ΄Π½ΠΈ Π²Π»Π°ΠΊΠ½Π° сС користат Π·Π° покомплСксни Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ, ΠΊΠ°ΠΊΠΎ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π²ΠΎ авионската ΠΈ Π²ΠΎ Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΏΠ»ΠΎΠ²Π½Π°Ρ‚Π° ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜Π°. Π—Π° Ρ‚Π°ΠΊΠ²ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈ, Π±Π°Ρ€Π°ΡšΠ°Ρ‚Π° Π·Π° Π½Π°ΠΌΠ°Π»ΡƒΠ²Π°ΡšΠ΅ Π½Π° Ρ‚Π΅ΠΆΠΈΠ½Π°Ρ‚Π° сС ΡƒΡˆΡ‚Π΅ ΠΏΠΎΠ³ΠΎΠ»Π΅ΠΌΠΈ, ΡˆΡ‚ΠΎ ја ΠΎΠΏΡ€Π°Π²Π΄ΡƒΠ²Π° повисоката Ρ†Π΅Π½Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Ρ‚ΠΈΡ‚Π΅ Π·Π°Ρ˜Π°ΠΊΠ½ΡƒΠ²Π°Ρ‡ΠΊΠΈ Π²Π»Π°ΠΊΠ½Π°. ДСнСс, сè повСќС сС Π·Π³ΠΎΠ»Π΅ΠΌΡƒΠ²Π° притисокот Π²Ρ€Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΠΈΡ‚Π΅ Π½Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ ΠΈ Π½Π° ΠΊΡ€Π°Ρ˜Π½ΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈ Π΄Π° Π³ΠΎ Π·Π΅ΠΌΠ°Ρ‚ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄ ΠΈ Π²Π»ΠΈΡ˜Π°Π½ΠΈΠ΅Ρ‚ΠΎ ΡˆΡ‚ΠΎ Π³ΠΎ ΠΈΠΌΠ°Π°Ρ‚ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅ Π²Ρ€Π· ΠΎΠΊΠΎΠ»ΠΈΠ½Π°Ρ‚Π°, ΠΏΠΎΡ‡Π½ΡƒΠ²Π°Ρ˜ΡœΠΈ ΠΎΠ΄ процСсот Π½Π° производство, циклусот Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π° ΠΈ ΠΊΡ€Π°Ρ˜Π½ΠΎΡ‚ΠΎ ΠΎΡ‚ΡΡ‚Ρ€Π°Π½ΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅. Π—Π³ΠΎΠ»Π΅ΠΌΠ΅Π½Π°Ρ‚Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π° Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ Π²ΠΎ индустриското производство придонСсува Π·Π° создавањС Π½Π° ΡƒΡˆΡ‚Π΅ ΠΏΠΎΠ³ΠΎΠ»Π΅ΠΌΠΈ количСства ΠΎΡ‚ΠΏΠ°Π΄ со кој ќС Ρ‚Ρ€Π΅Π±Π° Π΄Π° сС справимС Π²ΠΎ ΠΈΠ΄Π½ΠΈΠ½Π°. Π˜ΡΡ‚ΠΎ Ρ‚Π°ΠΊΠ°, Π·Π° овој Ρ‚ΠΈΠΏ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ ΠΏΠΎΡΡ‚ΠΎΡ˜Π°Ρ‚ законски Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΈΠ²ΠΈ ΠΊΠΎΠΈ Π²Ρ€ΡˆΠ°Ρ‚ притисок Π²Ρ€Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΠΈΡ‚Π΅ Π΄Π° Π³ΠΎ Π·Π΅ΠΌΠ°Ρ‚ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΠΌΠ°Π½ΠΎΡ‚ Π½Π° ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΈ Π·Π° ΠΎΠ²Π° сС Π·Π°Π±Ρ€Π°Π½ΠΈΡ‚Π΅ Π·Π° Π΄Π΅ΠΏΠΎΠ½ΠΈΡ€Π°ΡšΠ΅, одговорноста Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΠΎΡ‚ Π·Π° ΠΎΠ΄Ρ€Π΅Π΄Π΅Π½ΠΈ Π³Ρ€ΡƒΠΏΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈ, Π²ΠΎΠ²Π΅Π΄ΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π΄Π°Π½ΠΎΡ†ΠΈ Π·Π° ΡΠΏΠ°Π»ΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚ ΠΈ слично. Π¦Π΅Π»Ρ‚Π° Π½Π° ситС ΠΎΠ²ΠΈΠ΅ Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΈΠ²ΠΈ Π΅ Π΄Π° сС Π½Π°ΠΌΠ°Π»ΠΈ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΡ‚ΠΎ влијаниС Π²Ρ€Π· ΠΆΠΈΠ²ΠΎΡ‚Π½Π°Ρ‚Π° срСдина. Π—Π° ΠΊΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ, ΠΊΠ°ΠΊΠΎ Ρ‡Π΅Π»ΠΈΠΊ ΠΈ Π°Π»ΡƒΠΌΠΈΠ½ΠΈΡƒΠΌ, сС ΠΏΡ€ΠΈΠΌΠ΅Π½ΡƒΠ²Π°Π°Ρ‚ Π΄ΠΎΠ±Ρ€ΠΎ ΠΏΠΎΠ·Π½Π°Ρ‚ΠΈΡ‚Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π½Π° Ρ€Π΅Ρ†ΠΈΠΊΠ»ΠΈΡ€Π°ΡšΠ΅. Но Ρ‚ΠΎΠ° Π½Π΅ Π΅ ΡΠ»ΡƒΡ‡Π°Ρ˜ со ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΈΡ‚Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ. Π Π΅Ρ†ΠΈΠΊΠ»ΠΈΡ€Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΈΡ‚Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ Π΅ ΠΊΠΎΠΌΠΏΠ»ΠΈΡ†ΠΈΡ€Π°Π½ процСс, особСно Ρ€Π΅Ρ†ΠΈΠΊΠ»ΠΈΡ€Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° Ρ‚Π΅Ρ€ΠΌΠΎΡ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ‚Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ ΡˆΡ‚ΠΎ Π΅ ΠΌΠ½ΠΎΠ³Ρƒ Ρ‚Π΅ΡˆΠΊΠΎ ΠΈΠ»ΠΈ Π΄ΡƒΡ€ΠΈ ΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. Π˜ΡΡ‚ΠΎ Ρ‚Π°ΠΊΠ°, сè ΡƒΡˆΡ‚Π΅ Π½Π΅ постои ΠΏΠ°Π·Π°Ρ€ Π·Π° Ρ€Π΅Ρ†ΠΈΠΊΠ»ΠΈΡ€Π°Π½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ. Π—Π° Π΄Π° сС Ρ„ΠΎΡ€ΠΌΠΈΡ€Π° ΠΏΠ°Π·Π°Ρ€, Π½Π΅ΠΎΠΏΡ…ΠΎΠ΄Π½ΠΎ Π΅ ΠΏΡ€Π΅Ρ‚Ρ…ΠΎΠ΄Π½ΠΎ Π΄Π° Π±ΠΈΠ΄Π°Ρ‚ исполнСти Π½Π΅ΠΊΠΎΠ»ΠΊΡƒ прСдуслови ΠΊΠΎΠΈ Π²ΠΊΠ»ΡƒΡ‡ΡƒΠ²Π°Π°Ρ‚ ΠΏΡ€Π°ΡˆΠ°ΡšΠ° ΠΏΠΎΠ²Ρ€Π·Π°Π½ΠΈ со инфраструктурата, количСството ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ, Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°Ρ‚Π° Π·Π° Ρ€Π΅Ρ†ΠΈΠΊΠ»ΠΈΡ€Π°ΡšΠ΅ ΠΈ ΠΌΠΎΠΆΠ½ΠΈΡ‚Π΅ Π°ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ. Π‘Π΅ΠΏΠ°ΠΊ, ситС ΠΎΠ²ΠΈΠ΅ прСдуслови сè ΡƒΡˆΡ‚Π΅ Π½Π΅ сС исполнСти, ΠΈΠ°ΠΊΠΎ Π΅ Π½Π΅ΠΎΠΏΡ…ΠΎΠ΄Π½ΠΎ ΠΏΡ€Π΅Π·Π΅ΠΌΠ°ΡšΠ΅ Π°ΠΊΡ†ΠΈΠΈ Π·Π°Ρ€Π°Π΄ΠΈ ΠΈΡΠΏΠΎΠ»Π½ΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π½ΠΈΡ‚Π΅ ΠΈ ΠΈΠ΄Π½ΠΈΡ‚Π΅ законски Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΈΠ²ΠΈ. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΈΡ‚Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ сС Ρ€Π΅Π»Π°Ρ‚ΠΈΠ²Π½ΠΎ Π½ΠΎΠ²Π° Π³Ρ€ΡƒΠΏΠ° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ ΠΈ ΠΏΠΎΡ€Π°Π΄ΠΈ Ρ‚ΠΎΠ° ΠΎΠ±Π΅ΠΌΠΎΡ‚ Π½Π° Π½ΠΈΠ²Π½Π°Ρ‚Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π° сè ΡƒΡˆΡ‚Π΅ Π½Π΅ Π΅ ΠΊΠ°ΠΊΠΎ Π½Π° ΠΌΠ΅Ρ‚Π°Π»Π½ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ. Π‘ΠΈΠ΄Π΅Ρ˜ΡœΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΡ‚Π΅ сС ΡΠΎΡΡ‚ΠΎΡ˜Π°Ρ‚ ΠΎΠ΄ мСшавина Π½Π° Π½Π΅ΠΊΠΎΠ»ΠΊΡƒ Π²ΠΈΠ΄Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ, Π½Π° ΠΌΠ°ΠΊΡ€ΠΎ Π½ΠΈΠ²ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅ Π΄Π° сС смСтаат Π·Π° Ρ…ΠΎΠΌΠΎΠ³Π΅Π½ΠΈ ΠΊΠ°ΠΊΠΎ Ρ‡Π΅Π»ΠΈΡ‡Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ. Π‘ΠΈΡ‚Π΅ ΠΎΠ²ΠΈΠ΅ околности Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»Π½ΠΎ Π³ΠΈ ΠΊΠΎΠΌΠΏΠ»ΠΈΡ†ΠΈΡ€Π°Π°Ρ‚ моТноститС Π·Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°ΡšΠ΅ Π½Π° Π΄ΠΎΠ±Ρ€ΠΎ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΈΡ€Π°Π½ систСм Π·Π° ΠΏΠΎΡΡ‚Π°ΠΏΡƒΠ²Π°ΡšΠ΅ со ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚. ДСнСс, Π·Π° ΡΠΏΡ€Π°Π²ΡƒΠ²Π°ΡšΠ΅ со ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚ ΠΎΠ΄ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ Π³Π»Π°Π²Π½ΠΎ сС користи Π΄Π΅ΠΏΠΎΠ½ΠΈΡ€Π°ΡšΠ΅Ρ‚ΠΎ, Π½ΠΎ исто Ρ‚Π°ΠΊΠ°, ΠΈ ΡΠΏΠ°Π»ΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π΅ ΠΌΠΎΠΆΠ½Π° Π°Π»Ρ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π°. Π—Π° Π΄Π° ΠΌΠΎΠΆΠ°Ρ‚ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈΡ‚Π΅ Π΄Π° ΠΎΠ΄Π³ΠΎΠ²ΠΎΡ€Π°Ρ‚ Π½Π° Π΅ΠΊΠΎΠ»ΠΎΡˆΠΊΠΈΡ‚Π΅ Π±Π°Ρ€Π°ΡšΠ° Π½Π° ΠΎΠΏΡˆΡ‚Π΅ΡΡ‚Π²ΠΎΡ‚ΠΎ ΠΈ ΠΏΠΎΡΡ‚ΠΎΡ˜Π½ΠΈΡ‚Π΅ Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΈΠ²ΠΈ, Π±Π°Ρ€Π°Π°Ρ‚ Π½ΠΎΠ²ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° ΠΎΡ‚ΡΡ‚Ρ€Π°Π½ΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚ ΠΏΡ€ΠΈ ΡˆΡ‚ΠΎ ќС Π±ΠΈΠ΄Π°Ρ‚ Π·Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄ ΠΏΠΎΡΡ‚ΠΎΡ˜Π½ΠΈΡ‚Π΅ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ Π·Π° Ρ‚Ρ€Π΅Ρ‚ΠΌΠ°Π½ Π½Π° ΠΎΡ‚ΠΏΠ°Π΄, ΠΏΠΎΡΡ‚ΠΎΡ˜Π½ΠΈΡ‚Π΅ ΠΈ ΠΎΡ‡Π΅ΠΊΡƒΠ²Π°Π½ΠΈΡ‚Π΅ количСства Π½Π° ΠΎΡ‚ΠΏΠ°Π΄ ΠΈ законскитС Ρ€Π΅Π³ΡƒΠ»Π°Ρ‚ΠΈΠ²ΠΈ. Π’ΠΎ зависност ΠΎΠ΄ Π²ΠΈΠ΄ΠΎΡ‚ Π½Π° ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚, ΠΌΠΎΠΆΠ΅ Π΄Π° Π±ΠΈΠ΄Π°Ρ‚ Π²ΠΊΠ»ΡƒΡ‡Π΅Π½ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ процСси ΠΈ Π·Π°Ρ‚ΠΎΠ° сС Π½Π΅ΠΎΠΏΡ…ΠΎΠ΄Π½ΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈΡ‚Π΅ ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° Π½Π° ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚. ΠŸΡ€ΠΈΡ‚ΠΎΠ°, Π½Π΅ΠΎΠΏΡ…ΠΎΠ΄Π½Π° Π΅ поврзаност ΠΌΠ΅Ρ“Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈΡ‚Π΅ Ρ‡Π΅ΠΊΠΎΡ€ΠΈ Π½Π° ΡƒΠΏΡ€Π°Π²ΡƒΠ²Π°ΡšΠ΅ со ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚ ΠΎΠ΄ искористСнитС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈ Π΄ΠΎ Π½ΠΈΠ²Π½ΠΎΡ‚ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ ΡΠΏΡ€Π°Π²ΡƒΠ²Π°ΡšΠ΅. Π¦Π΅Π»Ρ‚Π° Π΅ Π΄Π° сС ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΡƒΠ²Π°Π°Ρ‚ ΠΈ Π΄Π° сС ΠΏΠΎΠ²Ρ€Π·Π°Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΈΡ‚Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ (ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π°Ρ‚Π° Π½Π° ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚) Π·Π° сСкој Ρ‡Π΅ΠΊΠΎΡ€ (процСс) со Ρ†Π΅Π» Π΄Π° сС спровСдат Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½ΠΈ процСси Π·Π° Ρ‚Ρ€Π΅Ρ‚ΠΌΠ°Π½ Π½Π° ΠΎΡ‚ΠΏΠ°Π΄ΠΎΡ‚. ΠŸΡ€ΠΈΡ‚ΠΎΠ°, Ρ‚Ρ€ΠΎΡˆΠΎΡ†ΠΈΡ‚Π΅ сС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π°Ρ‚ ΠΎΠ΄ страна Π½Π° самитС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΠΈ Π½Π° ΠΎΡ‚ΠΏΠ°Π΄, Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΡ‚Π΅ Π²Ρ€Π· ΠΆΠΈΠ²ΠΎΡ‚Π½Π°Ρ‚Π° срСдина сС Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Π°Ρ‚ Π²Ρ€Π· основа Π½Π° ΠΏΡ€ΠΎΡ†Π΅Π½Π°Ρ‚Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΈΠΎΡ‚ циклус, LCA (life cycle assessment)

    Biocomposites based on poly(lactic acid) and kenaf fibers: effect of microfibrillated cellulose

    Get PDF
    In this work, the influence of microfibrillated cellulose (MFC) on the basic mechanical properties of PLA/kenaf fiber biocomposites has been studied. The addition of 5–15 % microfibrillated cellulose to a biocomposite premix has resulted in an increased glass transition temperature of the final product, produced by compression molding of previously melt-mixed composite components. The presence of MFC has influenced the interface-sensitive properties of the PLA/kenaf composite: at an optimal loading of 10 %, the interfacial energy release rate was increased by about 20 %. Moreover, flexural strength and modulus of the composites were also improved (from 34.8 MPa to 57.1 MPa and from 4.9 GPa to 5.8 GPa, respectively). Keywords: biocomposites; poly(lactic acid); kenaf fibers; microfibrillated cellulos

    Utilization of recycled polymer matrices for production of eco-composites

    Get PDF
    Abstract: One of the big new areas of development of the advanced composite materials is in combining natural fi bers with thermoplastics for producing lightweight, environmentally friendly, cost-effective composite material. The aim of this work is to show the possibilities of recycling and reuse of thermoplastic polymer matrices with rice hulls (RH) and kenaf fi bres (KF) using the conventional techniques, extrusion and compression moulding. The matrices (polypropylene (PP) and poly(lactic) acid (PLA) ) were recycled one and two times and the fi bers/fi ller were compounded with recycled matrix. The processing and material properties have been studied on the composites with recycled matrix and compared to the composites with virgin matrix. Characterization of all composites includes mechanical, morphological and thermo-gravimetrical analysis. Π’he fl exural properties for PP recycled based composites were held close to the fl exural properties for composite based on neat PP, but for PLA recycled based composite the fl exural properties are decreased for about 50%. The thermal stability of recycled matrices based composites is very similar to the thermal stability of the composites with virgin matrix. SEM analysis has shown that the fi llers/fi bers are covered by the recycled polymer matrix, indicated on the satisfi ed durability of the recycled polymer matrices. The obtained results have shown that both polymer matrices (biodegradable and no degradable) could be recycled with acceptable mechanical properties and they can be successfully used for production of eco-composites. Keywords: eco-composites, polypropylene, poly(lactic acid), rice hulls, kenaf fi bers, extrusion compressio

    Materials Engineering

    Get PDF
    The material presented in this book is the last part from the five books series which are resulte of the aforementioned project. Sustainable development, pariculary for industry was the base for developing of these educative materials. Part of the contents presented in the previous books covered the temas which generally are connected with sustainable development, but this book coveres the types of materials in general and the management of the waste materials. The nowdays fast development which results in intensive way of leaving is as a consequence of the development of different kinds of materials which can be finde in various segments of everyday life. So, in the first part of this book in particular thematical parts are presented the different kinds of materials like: polymer materials, metals and alloys, ceramics materials, glass, composite materials and eco-composite materials. Also, as content in this part of the book are the themas: science and engineering of materials, nanotechnology and nanomaterials and modern electrode materials in the hydrogen economy. In the first part of the book the particular attention is given on ther type and usage of materials starting from the operable moto in the science and engeneering of materials i.e. the thetrade: synthesis – structure – properties – application. The second part of this book thematically covered the treatment of waste in the materials engineering in general, but also the actual themas from the management of waste are presented like recycling of: polymers, metal sctap, glass and refractories. The production of ceramics from waste and end of life treatment of polymer composite materials present the two parts consisted in the second part of the book. In this part of the book the particular attention was payed on the diferent types of materials which can be treated as raw materials from which new or the same products can be produced. Also,the attention was payed on the treatment of waste as energy resourse
    • …
    corecore